There’s a reason why the frequency is exactly 50hz or 60hz, and it’s not “at least 50hz or 60hz”. You can’t just have 55hz on the grid, you’ll destroy half a country.
It’s not just about frequency - though that is important for devices that synchronize using the grid. When your frequency is going up because of too much power so will voltage. Think about that for a minute.
By not all you mean motors with windings connected to grid? Well, they still will work on higher frequencies, but on higher speed. Real problem is low frequency, not high. Well, 0.5kHz not all devices can handle, but most consumers(even conumer electronics, no pun intended) even rated to 50-60Hz range. So 46-64Hz should be fine for them.
What about sensitive devices keeping patients alive in hospitals?
Sensetive devices that can’t handle range bigger than ±0.4Hz? Are you kiddding me? How does that even pass certification?
Most frequency-sencetive devices are not consumers, but transformers and turbines.
Oh ok, I guess frequency maintenance on the grid isn’t a problem then and all the pumped storage and battery installations can shut and all the grid planners can go home and the spots markets can close and we can just dump as current as we see fit onto the grid and you’re right and I’m wrong.
All of that matters, but I think the parent post was only calling out the hospital equipment as a bad example. Like how your keyboard and your SSD don’t care what the grid is doing as long as the PSU can handle it.
But back to maintaining the frequency on the grid, along with keeping it within tolerance don’t they also have to make sure that the average frequency over time is VERY close to the target? I believe there are devices that use the frequency for timekeeping as well, like some old plug-in alarm clocks.
Fair enough. I was getting frustrated because I was trying to make a larger point about the fact that the grid can’t endlessly handle production. At some point the grid has to say “it will cost you to dump this onto the grid”. And suddenly I found myself discussing PSUs. I mean, yes, I’m aware there’s equipment on the grid that can handle different frequencies better than others but I felt we were discussing the bark of a single tree when I was trying to talk about the forest.
It really is a good point you make though. There’s a large balancing act to produce the right amount of power at exactly the time it’s needed. I think in our daily lives, and especially for non-tech/STEM folks, electricity is just taken for granted as always available and unlimited on an individual scale. I think people don’t envision giant spinning turbines when they plug something in, just like they don’t think of racks of computers in a data center when they open Amazon or Facebook.
Maybe it will be less like that in a couple decades when there is distributed energy storage all over the grid, including individual homes & vehicles.
Usually too low frequency is issue, I can’t imagine why even double frequency can damage PSU.
There’s a reason why the frequency is exactly 50hz or 60hz, and it’s not “at least 50hz or 60hz”. You can’t just have 55hz on the grid, you’ll destroy half a country.
That’s why I say low frequency is problem, but high is not as much.
I don’t think you said why?
some clocks are bound to grid frequency. It’s the easiest most accessible way to clock time semi accurately.
It’s not just about frequency - though that is important for devices that synchronize using the grid. When your frequency is going up because of too much power so will voltage. Think about that for a minute.
Not necessarily(see field windings), but higher voltage is indeed a problem
Not everything on the grid is a motor. Even if it was you would still need to rebuild the motor to change field windings.
Ok, your particular device may handle a wide band of frequencies. Congrats.
But do we agree that not all devices can? What about sensitive devices keeping patients alive in hospitals?
lol If you think hospitals don’t have managed power systems you shouldn’t be contributing.
Also lol if you think medical equipment isn’t required to be robust, have you ever read a supply tender spec for a hospital?
By not all you mean motors with windings connected to grid? Well, they still will work on higher frequencies, but on higher speed. Real problem is low frequency, not high. Well, 0.5kHz not all devices can handle, but most consumers(even conumer electronics, no pun intended) even rated to 50-60Hz range. So 46-64Hz should be fine for them.
Sensetive devices that can’t handle range bigger than ±0.4Hz? Are you kiddding me? How does that even pass certification?
Most frequency-sencetive devices are not consumers, but transformers and turbines.
Those would not be plugged straight into the grid but with a power conditioner inbetween
Oh ok, I guess frequency maintenance on the grid isn’t a problem then and all the pumped storage and battery installations can shut and all the grid planners can go home and the spots markets can close and we can just dump as current as we see fit onto the grid and you’re right and I’m wrong.
All of that matters, but I think the parent post was only calling out the hospital equipment as a bad example. Like how your keyboard and your SSD don’t care what the grid is doing as long as the PSU can handle it.
But back to maintaining the frequency on the grid, along with keeping it within tolerance don’t they also have to make sure that the average frequency over time is VERY close to the target? I believe there are devices that use the frequency for timekeeping as well, like some old plug-in alarm clocks.
Fair enough. I was getting frustrated because I was trying to make a larger point about the fact that the grid can’t endlessly handle production. At some point the grid has to say “it will cost you to dump this onto the grid”. And suddenly I found myself discussing PSUs. I mean, yes, I’m aware there’s equipment on the grid that can handle different frequencies better than others but I felt we were discussing the bark of a single tree when I was trying to talk about the forest.
Also fair enough!
It really is a good point you make though. There’s a large balancing act to produce the right amount of power at exactly the time it’s needed. I think in our daily lives, and especially for non-tech/STEM folks, electricity is just taken for granted as always available and unlimited on an individual scale. I think people don’t envision giant spinning turbines when they plug something in, just like they don’t think of racks of computers in a data center when they open Amazon or Facebook.
Maybe it will be less like that in a couple decades when there is distributed energy storage all over the grid, including individual homes & vehicles.
I mean I envision the data centers. I also envision the turbines. Am I doing it right?