• uberrice@feddit.de
    link
    fedilink
    arrow-up
    1
    ·
    edit-2
    1 year ago

    No, computing (as in general computing) will barely be affected. Computing uses semiconductors, which this (AFAIK) isn’t. Switching losses always occur unless you switch instantly, which is impossible. Most of the heat of cpus comes from there.

    Specialized things like quantum computing are a different story.

    What this superconductor could mean though: you could have a relatively thin cable from say, the Sahara to Europe, that can losslessly transfer energy. No losses whatsoever. So you can produce energy wherever energy is present, and use it where energy is required!

    • tinwhiskers@kbin.social
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      You can use superconductors to create Josephson junctions, which can be used for standard logic operations (but also useful in quantum computers). These junctions are much more efficient and much faster than transistors.

      This particular superconductor will not be useful for transmitting power because the effect breaks down at very low current limits in this material, but it will be very useful for studying superconductors.

      So contrary to what you said, this will in fact not be useful for power transmission, but could be useful for CPUs and GPUs, and could lead to computers that are hundreds or thousands of times faster and more efficient than what we have today.

      To be fair this material may never see a practical use though.

    • Redscare867@lemmy.ml
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      I can’t speak to the superconducting potions of this comment, but the general computing information is mostly correct.

      Switching losses are a result of capacitance in the circuit. These capacitances aren’t going anywhere in transistors made from semiconductors. Additionally, even when a transistor is on it has some resistance, which of course creates heat whenever a current moves through that transistor. Leakage current also generates waste heat.

      I could see room temperature super conductors being useful as replacements for bus lines in a digital circuit, but this wouldn’t eliminate the heat in the circuit. Most of the heat is created in the transistor junctions, so the effect would be very minimal if even noticeable.

    • exscape@kbin.social
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      Well, almost no losses. No resistive losses. Should still lose some because of electromagnetic fields surrounding the cabling interacting with the environment.