It can look dumb, but I always had this question as a kid, what physical principles would prevent this?
When you push something you push the atoms in the thing. This in turn pushes the adjacent atoms, when push the adjacent atoms all the way down the line. Very much like pushing water in the bathtub, it ripples down the line. The speed at which atoms propogate this ripple is the speed of sound. In air this is roughly 700mph, but as the substance gets harder* it gets faster. For example, aluminum and steel it is about 11,000mph. That’s why there’s a movie trope about putting your ear to the railroad line to hear the train.
If you are talking about something magically hard then I suppose the speed of sound in that material could approach the speed of light, but still not surpass it. Nothing with mass may travel the speed of light, not even an electron, let alone nuclei.
*generalizing
Best answer
You’re forgetting the speed at which the shockwave from the compression travels through the stick. I guess it’s around the speed of sound in that material, which might be ~2 km/s
The compression on the end of the stick wouldn’t travel faster than the speed of sound in the stick making it MUCH slower than light.
But… But… The stick is unfoldable!
You said unfoldable not non-compressible. Your fault.
What about the speed of the earth’s rotation though, could that fuck up the stick holding?
It’ll knock the moon and earth out of orbit!
So folks have already explained the stick, but you’re actually somewhat close to one of the ways you can sort of bend the rules of FTL, at least when it comes to a group of photons.
Instead of a stick, imagine a laser on earth pointed at one edge of the moon. Now suddenly shift the laser to the other side of the moon. What happens to the laser point on the moon’s surface?
Well, it still takes light speed (1.3 seconds to the moon) for the movement to take effect, but once it starts, the “point” will “travel” to the other side faster than light. It’s not the same photons; and if you could trace the path of the laser, you’d find that the photons space out so much that there are gaps like a dotted line; but if you had a set of sensors on each side of the moon set up to detect the laser, they would find that the time between the first and second sensor detecting the beam would be faster than what light speed would typically allow.
It’s not exactly practical, and it’s such an edge case that I doubt we can find a good way to use it, but yeah; FTL through arc lengths can kind of be a thing. At least if you tilt your head and squint funny at it.
You’d still be limited by light speed to transmit the information between the two locations to compare times or indicate they received a signal.
With your example, nothing is “moving”.
Imagine a giant wave in the ocean that is almost lined up perfectly parallel to the shore. Imagine the angle that the wave is off by is astronomically small (0.0000000001 degrees off from parallel). Also imagine the shore line is astronomically long (millions of kilometers).
One end of the wave will crash the shore slightly before the other end of the wave at the opposite end of the shore. The difference in time between the two sides of the shore is also astronomically small (so small that not even light could reach the other end in time)
Now let me ask you: did the wave travel faster than the speed of light? Of course not. I think that is a similar analogy to the laser movement concept you described.
I mean, for a little the guy on the right would be correct, but the using math you should be able to tell who was actually correct, right?
That’s the thing. The math says they’re both correct, and that it depends on the viewpoint of the observer.
I’m inside a car moving at 60 mph. I throw the ball forward (let’s ignore air resistance) at 30 mph.
Me, who’s inside the car, sees the ball move forward at 30 mph.
You, who’s outside the car, sees the ball move at the car’s speed PLUS the throw speed (60 + 30 =90 mph)
So, the ball is moving both at 30 mph and 90 mph. How can that be? It depends entirely upon your reference frame (inside the car? Outside the car? Inside another car moving at 40 mph?). The ball moves at all these speeds, and they are all “correct” within universal terms.
Sure, the time between detections is faster than the time it takes light to travel from one detector to the other. Nothing is actually traveling faster than light and no physical laws are broken.
I’m not sure. The beam of light would bend as it travels to the moon, delaying the projected dot on the moons surface.
Just like it happens with a stream of water coming out of a hose. You point the hose in a new direction, but it won’t get wet before the the time it takes the water to travel from the hose to the pointed location.
This is hard to truly eli5, so I’ll have a go too, in case the others haven’t cleared it up for you.
The spot on the moon that moves isn’t a real thing, it’s the effect of photons hitting the left side, then other photons hitting the right side. The ‘reason’ or ‘cause’ for those photons comes from earth very much at light speed. But the left side of the moon can’t cause an effect in the right side, that fast. It just experiences a thing right before the right side experiences something similar.
Like if two cars drive from London to Manchester and Liverpool, arriving within seconds of each other. It doesn’t mean you can drive from Manchester to Liverpool in seconds.
There’s an SMBC I love on this: “The shadows of reality go as fast as they like.” https://www.smbc-comics.com/comic/superluminal
Bonus: IIRC, any two events that are too close in time for light to travel from one to the other, can be viewed from a different “inertial reference frame” (someone else moving fast and analysing things with the same physics) as being the other way round. I.e. the right observer could see the right hand side of the moon get lit up before the left hand side. But the chap on earth wiggling the laser pointer is still wiggling it slower than the speed of light, so this observer would still see the laser pointer move from left to right. How does that work?
this isn’t at all what this example depicts, here there is actual information transfer.
this depiction is actually just false, the light would send information faster than the stick, because in the stick information only travels as fast as speed of sound in the stick, which is why completely rigid objects don’t exist
Go find a 30’ stick and let us know if you can point it at the moon.
There’s no such thing as a perfectly rigid object.
There was, but now I’m getting older and more tired
Have you spoken to your healthcare provider about Viagratm? It may be able to help with your issue. (Please seek immediate medical help with an erection lasting more than 4 hours).
What about the mass of that stick? Inertial doesn’t care for your little silly games.
Neither do the two gravity wells the stick spans. And the earth and moon are moving relative to each other, someone would probably get their head knocked off by that stick. Before it eventually falls to the earth with quite a bit of force because earth’s gravity well will win. Then it’ll eventually settle into a giant teeter totter, assuming it is rigid enough to survive the impact.
EDIT: It’s in Polish, but it’s still a good video.
You’re pushing the atoms on your end, which in turn push the next atoms, which push the next ones and so on up to the atoms at the end of the rod which push the hand of your friend on the moon.
As it so happens the way the atoms push each other is electromagnetism, in other words sending photons (same thing light is made of) to each other but these photons are not at visible wavelengths so you don’t see them as light.
So pushing the rod is just sending a wave down the rod of atoms pushing each other with the gaps between atoms being bridged using photons, so it will never be faster than the speed at which photons can travel in vacuum (it’s actually slower because part of the movement of that wave is not the lightspeed-travelling photons bridging the gaps between atoms but the actual atoms moving and atoms have mass so they cannot travel as fast as the speed of light).
In normal day to day life the rods are far to short for us to notice the delay between the pushing the rod on one end and the rod pushing something on the other end.
Thank you for this. Everything above it was just people saying the stick would move slower than light, nothing about why!
As it so happens the way the atoms push each other is electromagnetism, in other words sending photons (same thing light is made of) to each other but these photons are not at visible wavelengths so you don’t see them as light.
Wat? I strongly believe you are not correct. Which is to say, I think you are talking out of your arse entirely. If you push on a thing you peturb the electron structure of the material. These peturbations propagate as vibratory modes modeled as phonons.
While technically some of this energy is emitted as thermal radiation that is not primarily where it goes. And phonons themselves propagate at a slower rate than the speed of light, a significantly slower rate. Like a million times slower.
And how do you think the information that an electrically charged particle is moving reaches other electrically charged particles…
My mistake, that’s why sound travels at the speed of light.
It’s just not useful to talk about this at the level of the standard model. We are interested in the bulk behaviour of condensed matter, the fact of the matter is that you will not be able to tell that the other end of the stick has been touched until the pressure wave reaches the end. It doesn’t matter if individual force carriers are moving at the speed of light because they are not moving in a single straight line. You are interested in the net velocity.
Wikipedia isn’t a textbook. Don’t overcomplicate shit and mislead people because you’ve spent a few hours browsing particle physics articles stoned.
I very explicitly said the whole thing is slower than the speed of light (much slower even) and even pointed out why: at the most basic of levels, the way charged particles push each other without contact is the electromagnetic force, meaning photons, but the actual particles still have to move and unlike photons they do have mass so the result is way slower than the speed of light.
To disprove the idea that a push on a solid object can travel faster than the speed of light (which is what the OP put forward), pointing out that at its most basic level the whole thing relies on actually photons which travel at the speed of light, will do it.
There was never any lower limit specified in my response because there is no need to go into that to disprove a theory about the upper limit being beyond a certain point. (Which makes that ironic statement of yours about the speed of sound-waves quite peculiar as it is mathematically and logically unrelated to what I wrote)
Going down into the complexity of the actual process, whilst interesting, isn’t going to answer the OPs question in an accessible and reasonably short manner using language that most people can understand.
- Aceticon BcS Applied Bullshit
LOL!
Reduced to name calling.
Good try, shame you don’t have the chops (as the way you express yourself gave away very early on)
I don’t know why you are pretending to have physics knowledge when you very obviously do not have an education in it. What do you get out of pretending to be an expert on the internet? There’s no reward for it.
Very well put.
Think of it like this. If our universe is a simulation, then the speed of light is the maximum speed at which information can propagate through reality. We know that for anything to move through space, it must move from one adjoining position to another, then another, then another, incrementally. Each one of those increments takes, at minimum, one ‘tick’ of the universe. That’s one tick to increment each bit of information, that is, the position of something moving at light speed from position x,y,z to x+1,y,z. Light moves as fast as the universe allows; if there was a faster speed, light would be doing it, but it turns out that our universe’s clock speed only supports speeds of up to 299,792,458 meters per second.
What you have here is sound. Motion propagates through material, at its fastest, at the speed of sound in that material. That’s part of the reason why moving large scale objects quickly gets weird.
This is actually a great example for why that stick must not exist.
You can also do this with a unbreakable stick and an unbreakable shorter tube. Throw the stick at a high velocity through the tube and it contracts for the point of view of the tube. Then close it shut. Now you have a stick that’s longer than the tube fully contained in it.
Putting it on the moon is just a distraction. It doesn’t matter if the rod is 1m long or 100,000km.
Even if it were perfectly rigid, supernaturally so, your push would still only transmit through the stick at the speed of light. The speed of light is the speed of time.
The push would travel at the speed of sound in the stick, much slower than the speed of light
No it wouldn’t. Sound is air vibration, which has to travel from one place to the next, static atoms don’t have to actually move to a place just transfer kinetic energy to the adjacenct atom, so it would be much closer to the speed of light. Although probably still (relatively (get it??)) slower.
Sound is air vibration
Sound is not exclusive to air, it can be generalized to vibrations in any media. Whale song and dolphin echolocation are certainly sounds, and we’re almost always talking about them propagating in water rather than air.
which has to travel from one place to the next
No, that isn’t how sound works. In air this would be a description of wind, not sound.
just transfer kinetic energy to the adjacenct atom
This is actually a good description of how sound waves propagate.
In a “perfectly rigid” stick (a fictional invention), the speed of sound is the speed of light.