Plan to commercialize supercapacitors in the next few years

  • Eager Eagle@lemmy.world
    link
    fedilink
    English
    arrow-up
    32
    arrow-down
    1
    ·
    edit-2
    1 year ago

    A solution that is inexpensive, scales, is not inconvenient, and fits household demands? What’s the catch?

    I hope it’s as good as it sounds and becomes a thing.

    • Rakust@kbin.social
      link
      fedilink
      arrow-up
      17
      arrow-down
      1
      ·
      1 year ago

      One of the big catches is how Greenhouse gas intensive concrete production is

      • Spedwell@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        1 year ago

        I think the idea here is to bake it into construction that would happen anyway. If you just need energy storage, keep using batteries. But if you’re pouring a foundation already, why not also turn that foundation into a battery?

      • Eager Eagle@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        1
        ·
        1 year ago

        concrete seems to be used here for its structural properties, just like we do it today. Their solution doesn’t seem to require it:

        If more powerful capacitors are required, they can be made with a larger concentration of carbon black, at the expense of some structural strength. This could be useful for applications where the concrete is not playing a structural role or where the full strength potential of concrete is not required. For applications such as a foundation, or structural elements of the base of a wind turbine, the “sweet spot” is around 10 percent carbon black in the mix, the team says.

          • deegeese@sopuli.xyz
            link
            fedilink
            English
            arrow-up
            6
            ·
            1 year ago

            If you’re releasing CO2 you’re losing carbon.

            If you make it with electricity it’s effectively a carbon sink.

    • iltoroargento@lemmy.sdf.org
      link
      fedilink
      English
      arrow-up
      12
      ·
      edit-2
      1 year ago

      I mean, there’s a reason why we’ve taken so long with even electric cars lol I hope this becomes a reality, but moneyed interests will fight tooth and nail.

      Edit: Also, they sold the idea of electric cars to us so we wouldn’t question a lack of infrastructure investment in railways which we so desperately need.

      • kautau@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        ·
        1 year ago

        Yeah they’ll scoop up the technology patents and then slowly utilize it if and when it works in their favor to maximize their profits

      • ubermeisters@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        1 year ago

        That’s only because that’s where we have an access currently. You can make carbon black by burning a whole lot of different things. Pretty much anything carbon-based. You don’t make carbon black specifically, you harvest carbon black from other processes and refine it if needed.

    • Bernie Ecclestoned@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      6
      ·
      1 year ago

      The team worked out that a 45 cubic meter material block of nanocarbon-black-doped concrete would have enough capacity to store about 10kWh

      10kWh is enough to run a house for a day, how much concrete would be in a house with concrete walls?

      • Eager Eagle@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        1 year ago

        naturally it depends on the walls and house layout, but just to have an idea: assuming a concrete thickness of 20cm and 4 external walls of 20m x 3m each:

        0.2 * 4 * 20 * 3 = 48m^3

        probably in the 100-200m^3 ballpark if we count internal walls, which are thinner, but cover more total length.

        And I know walls are usually not pure concrete, but functions like energy storage could very well change how we build them.

      • WiseThat@lemmy.ca
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        1 year ago

        For a basement with a 5-inch slab and exterior walls are 8 inches, 8ft high and also concrete… Then 45 cubic meters is about what you’d need.

        Of course, your basement walls are about as electrically grounded as it gets, so I doubt you’d be able to store power in them. One leak and you’re discharging all that power into the groundwater.

      • mlc894@lemm.ee
        link
        fedilink
        English
        arrow-up
        3
        ·
        1 year ago

        I wonder if the foundation of the house would be convenient for this… that much concrete is equivalent to a cube of side length around 10 feet, which seems to at least be in the ballpark for the total amount of concrete in a foundation. I think?

      • WetBeardHairs@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        10kWh is enough to run one 110VAC outlet at full capacity for about 10 hours. I don’t know where that 10kWh figure comes from but most American houses use between 15-30kWh per day.

        So that 10 foot cube would need to be closer to 15ft cubed. It’s huge. Perhaps the foundation of the structure would work, as someone else mentioned.

    • WarmSoda@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      2
      ·
      1 year ago

      The last time this news was posted everyone tore into it. I don’t remember the details, but it was funny.

      It’s just not feasible in reality.